
Technical Review of MinSwap

Smart Contract Verification Team

Contents

1 Executive SummaRy and Scope 2

2 Audit 3
2.1 Methodology . 3
2.2 Findings . 3

2.2.1 Vulnerabilities . 3
2.2.2 Implementation Bugs . 6
2.2.3 Unclear Specification . 7
2.2.4 CodeQuality . 8

2.3 Conclusion . 9

A Appendix 11
A.1 Tweag’s Modifications . 11

1

Chapter 1

Executive Summary and Scope

This RepoRt is pResented without waRRanty oR guaRanty of any type. This report lists the most
salient concerns that have so far become apparent to Tweag after a partial inspection of the engineering
work. Corrections, such as the cancellation of incorrectly reported issues, may arise. Therefore Tweag
advises against making any business decision or other decision based on this report.

Tweag does not Recommend foR oR against the use of any woRK oR supplieR RefeRenced in
this RepoRt. This report focuses on the technical implementation provided by the project’s contractors
and subcontractors, based on their information, and is not meant to assess the concept, mathematical
validity, or business validity of MinSwap’s product. This report does not assess the implementation
regarding financial viability nor suitability for any purpose.

Scope and Methodology
Tweag looks exclusively at the on-chain validation code provided by MinSwap. This excludes all the
frontend files and any problems contained therein. Tweag manually inspected the code contained in
the respective files and attempted to locate potential problems in one of these categories:

a) Unclear or wrong specifications that might allow for fringe behavior.

b) Implementation that does not abide by its specification.

c) Vulnerabilities an attacker could exploit if the code were deployed as-is, including:

• race conditions or denial-of-service attacks blocking other users from using the contract,
• incorrect dust collection and arithmetic calculations (including due to overflow or under-
flow),

• incorrect minting, burning, locking, and allocation of tokens,
• authorization issues,

d) General code quality comments and minor issues that are not exploitable.

Where applicable, Tweag will provide a recommendation for addressing the relevant issue.

2

Chapter 2

Audit

2.1 Methodology
Tweag analyzed the validator scripts comprising the MinSwap protocol as of commit 16255227 of the
repository1 shared with us. The names of the files considered in this audit and their sha256sum are listed
in Table 2.1. We had to perform minor modifications to MinSwap’s code to export certain names and
derive some extra instances, and the corresponding patch is listed in Appendix A.1.

Our analysis is based on the original documentation provided by MinSwap, on the expanded doc-
umentation that came on a later commit (3eaf2edf), and on Slack conversations with MinSwap. The
relevant documentation files are listed in Table 2.2 and their contents will be referred to as the specifica-
tion of the protocol.

Tweag is delivering a custom version of our cooked-validators library adapted for MinSwap’s val-
idators, due to their custom PAB requirements. Tweag does not commit to maintaining this custom ver-
sion of cooked-validators and reserves the right tomerge none or any number of thesemodifications to
the library’s main branch. For client’s convenience, we also package the snapshot of cooked-validators
with our other deliverables.

The MinSwap protocol is a collection of validator scripts and minting policies that enable creating
constant product pools and processing Uniswap-like orders over these pools. The notion of a batcher is
central to MinSwap’s protocol: these are entities that receive permission to apply open orders against
pools. This permission is granted by means of a license token, which has an expiration date.

Tweag did not check the correctness nor precision of the pool price calculations since this was absent
from the specification. Checking the contract for financial viability falls out of the scope of this review.

Because MinSwap built their off-chain code in Go, we began by writing our own transaction gener-
ation code with our cooked-validators library, in Haskell. Throughout our analysis, we assume that
(A) there exists at least one batcher and (B) the holder of the owner token is honest (implying the token
cannot be stolen, its holder’s computer cannot be hacked, and so on). Although MinSwap’s code is writ-
ten assuming that batchers are honest, we believe that, given the absence of detail on how their licenses
are distributed and the lack of accountability in case a batcher misbehaves (or gets their license stolen),
this is too important to ignore.

2.2 Findings
Table 2.3 lists our concerns with the current MinSwap’s code base based on our partial exploration
during a limited period of time. Throughout the rest of this section, we will detail each of our findings.

2.2.1 Vulnerabilities
2.2.1.1 ■ Unauthorized Redeeming of Open Orders

Severity: Critical
1https://github.com/minswap/minswap-dex-tweag

3

https://github.com/minswap/minswap-dex-tweag

sha256sum File Name

f6aa62...688edb src/Minswap/ConstantProductPoolNFT/Utils.hs

b8f6f5...a933ca src/Minswap/ConstantProductPoolNFT/OnChain.hs

c1d523...3fc89d src/Minswap/BatchOrder/Types.hs

91c490...e4b783 src/Minswap/BatchOrder/OnChain.hs

ffa880...ad1758 src/Minswap/ConstantProductPool/Utils.hs

d13a9e...17bd89 src/Minswap/ConstantProductPool/Types.hs

0781b3...dff5e9 src/Minswap/ConstantProductPool/OnChain.hs

509d1e...cd1a79 src/Minswap/ConstantProductFactory/Types.hs

37a9c4...a5e927 src/Minswap/ConstantProductFactory/OnChain.hs

f06d56...2354d9 src/Minswap/Types/Coin.hs

54ad61...a1b605 src/Minswap/MinswapCLI.hs

d72ab4...490ad0 src/Minswap/Spooky/TypedSpookyContexts.hs

b86f40...8413d2 src/Minswap/Spooky/Typed.hs

2201c9...9dbc77 src/Minswap/Spooky/UntypedSpookyContexts.hs

83f50f...9d13ec src/Minswap/Spooky/Untyped.hs

f40752...a91218 src/Minswap/Utils/OnChainUtils.hs

70ff43...8d5935 src/Minswap/ConstantProductLiquidity/OnChain.hs

Table 2.1: Files analyzed modulo the patches described in Appendix A.1

sha256sum File Name

12812a...b017dd docs/overview.md

f515ba...1d717e docs/tx-spec.md

Table 2.2: Documentation files and their sha256sum as of commit 3eaf2edf

4

Severity Section Summary

■ Critical 2.2.1.1 Unauthorized Redeeming of Open Orders
■ Critical 2.2.1.2 LP Tokens Can Be Duplicated
■ Critical 2.2.1.3 Unauthorized Hijacking of Pools Funds
■ High 2.2.3.1 Batchers Can Choose Pools
■ High 2.2.3.2 Batchers Licenses Cannot be Revoked
■ Medium 2.2.2.1 Batchers Can Choose Batching Order
■ Medium 2.2.3.3 Assumptions on Batcher’s Licenses Distribution
■ Medium 2.2.4.1 Reliance on Indexes Into ScriptContexts’ txInputs and txOutputs

■ Medium 2.2.4.2 Duplication of ScriptContext Definition
■ Medium 2.2.4.4 Protocol Specification Lacking
■ Low 2.2.2.2 Batcher Is Not Allowed to Apply Their Own Orders
■ Low 2.2.3.4 Pools Cannot Be Closed
■ Low 2.2.4.3 Large Refactoring Opportunities

Table 2.3: Table of findings

Open orders can be redeemed by anybody with the ApplyOrder redeemer as long as the attacker also
redeems one output belonging to the address of the poolCode validator. This can be easily done by
redeeming any pool with profit-sharing enabled with WithdrawLiquidity. This way attackers can steal
the funds locked in open orders.

The ideal solution is to use txInfoRedeemers from Plutus.V2.Ledger.Contexts.TxInfo, in the batchOrderCode
validator. Thisway, the batchOrderCode validator can ensure that a transaction also redeems a PoolDatum
with the ApplyPool redeemer. However, this approach will not work in the short term: anything
Plutus.V2 is unfortunately not supported on-chain just yet. If MinSwap needs a fix using Plutus.V1,
a possible workaround could be to restrict the withdraw liquidity endpoint to be accessible to transac-
tions signed by the “owner” only. This workaround relies on the fact that (A) “owner” is honest and (B)
there is only one publicly accessible redeemer to redeem a PoolDatum, which is to apply an order. Any
change in either of these conditions would require a re-evaluation of this recommendation.

2.2.1.2 ■ LP Tokens Can Be Duplicated

Severity: Critical

The minting policy lpCode from Minswap.ConstantProductLiquidity.OnChain is too loose. It allows
LP tokens of a pool to be minted by any transaction containing a single output belonging to any
script, as long as the output contains a pool NFT. In this case, an attacker can redeem a pool with
WithdrawLiquidity and mint an arbitrary amount of that pool’s LP tokens in the process. Next, this
attacker is equipped to empty the pool in question by sending a Withdraw order. The only precondition
is that the pool under attack has profit-sharing turned on.

Similarly to issue 2.2.1.1, the ideal solutionwould rely on the ScriptContext from Plutus.V2.Ledger.Contexts
and further restrict the minting of LP tokens to transactions that redeem a pool with ApplyPool. Since
that is not possible, the suggestions A and B in issue 2.2.1.1 will mitigate unrestricted minting of LP to-

5

kens. Orthogonally, one could strengthen the minting policy of LP tokens to only allow minting when
a transaction also consumes a UTxO containing a batcher’s license.

2.2.1.3 ■ Unauthorized Hijacking of Pools Funds

Severity: Critical

The pools are vulnerable to a datum-hijacking attack. The attack starts by creating a stealer script with a
datum and redeemer combination that is isomorphic to the poolCode from ConstantProductPool.OnChain.
Next, the attacker redeems a legitimate pool validator, but it “pays to” the stealer script. Because the
ownOutput is selected without regards to the address:

ownOutput :: TxOut
!ownOutput = case [o | o <- txOutputs, hasPoolNFT (txOutValue o) ppNftSymbol] of

[o] -> o

the ownOutput will contain the output that pays to the attacker’s script. Moreover, because it has an
isomorphic datum to PoolDatum, the outputPoolDatum gets decoded properly.

outputPoolDatum = mustFindScriptDatum @PoolDatum ownOutput info

This is a severe vulnerability and can be executed on any of the three redeemers from poolCode:

• WithdrawLiquidity: Most concerning since anybody can execute it as long as the pool under
attack has profit-sharing turned on.

• ApplyPool: Generally concerning since batchers can execute this attack, emptying a pool.

• UpdateFeeTo: Although vulnerable to this attack, the attacker would have to be holding the
“owner” token, which contradicts our assumption of the holder of the “owner” token being honest.

We recommend using getContinuingOutputs from Ledger.Contexts to select an output that is the
evolution of the current script datum. This vulnerability is closely related to our general concern
in 2.2.4.2. By duplicating and modifying ScriptContext from Plutus.V1.Ledger.Contexts, it is easy
to overlook the necessity to use the getContinuingOutputs function.

2.2.2 Implementation Bugs
2.2.2.1 ■ Batchers Can Choose Batching Order

Severity: Medium

A batcher that decides to not rely on the MinSwap application backend can choose a different order of
buy/sell/swap orders than the expected chronological order. This is categorized as a bug because the
specification mentions that orders need to be processed in fair order, but the on-chain code does not
enforce that. Hence, the code does not abide by the specification. We think it would be too difficult
to enforce this constraint at the on-chain level and, hence, suggest to loosen the specification and to
design a way to mitigate batchers that do not respect this property.

In particular, because the licenses cannot be revoked (issue 2.2.3.2), a batcher’s misbehavior cannot
be stopped until their license expires. Depending on the validity interval of the licenses, this can be a
problem. The discussion on issue 2.2.3.2 expands on this concern.

6

2.2.2.2 ■ Batcher Is Not Allowed to Apply Their Own Orders

Severity: Low

As it currently stands, a batcher is not allowed to place their own orders. While one can imagine this to
be a good thing (for instance, due to the possible conflict of interests of batchers), it is unclear from the
specification whether this is the intended behavior. In validateApplyPool we have:

userInputs :: [TxInInfo]
!userInputs = [i | i <- txInputs, isUserInput i]

isUserInput :: TxInInfo -> Bool
isUserInput txIn =
txInInfoOutRef txIn /= txInInfoOutRef ownInput

&& txOutAddress (txInInfoResolved txIn) /= batcherAddress

Hence, by construction, an order created by a batcher cannot be applied by the same batcher. Strength-
ening the specification or using some of the simplifications listed in issue 2.2.4.1 would address this.

2.2.3 Unclear Specification
2.2.3.1 ■ Batchers Can Choose Pools

Severity: High

Whenever a batcher picks an open order other than a withdraw, they can select whichever pool they
want to execute that order against. Moreover, they can create a custom pool just to execute said order.
The specification does not mention whether this is intended or not. We believe that orders could contain
some information about which pool the creator of the order wants it executed against.

2.2.3.2 ■ Batchers Licenses Cannot be Revoked

Severity: High

A batcher’s license is final and irrevocable until its deadline is reached. Because of the high permissions
and trust deposited on batchers, and depending on how these wallets are selected, the incentive for
misbehavior can be high. Additionally, it is to be expected that the private keys to those wallets will be
sought after by malicious third parties.

We recommend weighting out some options to make licenses non-transferable and revocable. One
option is the representation of licenses through an additional validator. Instances of said validator would
only be allowed to be created by the “owner”, but could be redeemed either by the “owner” for canceling
them, or by its respective batcher for applying orders to a pool. This would enable the “owner” to
immediately revoke misbehaving batchers.

A less centralized design might include the address of the batcher in the license itself, and also
include the set of undesirable batchers within the orders (for example, using a bloom filter). This way,
order creators could specify which batchers cannot redeem their orders.

2.2.3.3 ■ Assumptions on Batcher's Licenses Distribution

Severity: Medium

7

Precisely because of the issues discussed in issue 2.2.3.2, it is important to document how these licenses
are to be distributed and renewed. Currently, this information is absent from the specification.

2.2.3.4 ■ Pools Cannot Be Closed

Severity: Low

Pools can be created by anyone, but can never be closed. This means that whoever creates the pool will
lose their minAdaPerUTxO forever. Depending on how many pools MinSwap expects to exist, this can be
a non-negligible amount of Ada. This behavior is not explicit in the specification.

2.2.4 Code Quality
2.2.4.1 ■ Reliance on Indexes Into ScriptContexts' txInputs and txOutputs

Severity: Medium

Some of the validators rely on specifying an explicit integer index that indicates where certain trans-
action input is supposed to be located within the list of txInfoInputs. For example, the snippet below
was taken from the validateApplyPool function, which receives licenseIndex in a redeemer:

licenseInput :: TxInInfo
licenseInput = txInputs !! licenseIndex

txInputs :: [TxInInfo]
!txInputs = txInfoInputs $ scriptContextTxInfo info

The problem is that the order of inputs is supposed to be seen as something non-essential. The very
type of a transaction relies on a set of inputs2. As far as we understand, the motivation for relying on
the order of transaction inputs is to process orders chronologically. Yet, batchers are free to ignore that
restriction, as we could see in issue 2.2.2.1.

We suggest that enforcing the particular ordering in a batch is not that important. Instead, if the
orders are considered in whichever ordering they come (which will most likely be lexicographic on
the TxOutRef), it is very difficult to even attempt any front-running attack. A potential attacker can
never rely on their transaction being performed first because a batcher might include an order on a
lexicographically smaller TxOutRef. If the attacker is a batcher, they have the freedom to choose which
orders to batch together, which might enable them to pick a set of orders in which theirs comes first.
However, as it currently stands, the batcher can already do that for arbitrary sets of orders (issue 2.2.2.1).
Removing that constraint will inherently strengthen the protocol against front-running orders.

Maybe a lot of the code can be made simpler if the specification of validateApplyPoolmentioned it
processes the relevant inputs in the order given by the ScriptContext. We could even think of dropping
the constraint of needing a one-to-one relationship between userInputs and userOutputs, possibly
making transactions smaller. Issue 2.2.4.3 explores this direction a little further.

2.2.4.2 ■ Duplication of ScriptContext Definition

Severity: Medium

2https://github.com/input-output-hk/plutus/blob/1f31e640e8a258185db01fa899da63f9018c0e85/plutus-ledger-api/
src/Plutus/V1/Ledger/Tx.hs#L118

8

https://github.com/input-output-hk/plutus/blob/1f31e640e8a258185db01fa899da63f9018c0e85/plutus-ledger-api/src/Plutus/V1/Ledger/Tx.hs#L118
https://github.com/input-output-hk/plutus/blob/1f31e640e8a258185db01fa899da63f9018c0e85/plutus-ledger-api/src/Plutus/V1/Ledger/Tx.hs#L118

We understand that using Ledger.Context.ScriptContext causes scripts to be more expensive to run
due to unnecessary deserialization of potentially unused data. Yet, we have a slight concern that the cog-
nitive overhead, maintainability cost and the potential for bugs are not worth that price. In particular, in
MinSwap’s own encoding of Ledger.Context.ScriptContext the very important getContinuingOutputs
function was forgotten, which opened the vulnerability discussed in issue 2.2.1.3.

2.2.4.3 ■ Large Refactoring Opportunities

Severity: Low

There is heavy code duplication in the order validation code, which could be made more reusable and
easier to maintain and understand. In particular, the functions:

• validateDeposit

• validateSwapExactOut

• validateSwapExactIn

• validateOneSideDeposit

• validateWithdraw

exhibit enough common patterns that it could be worthwhile to rephrase those functions, making them
return a TxOut instead of receiving one and returning a boolean. This would increase code reuse and
facilitate further refactorings. In fact, we had to perform that very task in order to rebuild MinSwap’s
off-chain code in cooked-validators. Depending on how much time MinSwap is willing to put in im-
proving the code, it could be interesting to study whether these functions could return and manipulate
constraints in such a way that applyPool would just ensure the transaction outputs satisfy those con-
straints, regardless of how many outputs are there. We could get rid of the requirement that each order
must have a corresponding UTxO which could yield smaller transactions. We do not have an estimate
on whether or not this would make the script more expensive to execute, however.

2.2.4.4 ■ Protocol Specification Lacking

Severity: Medium

The documentation and specification of the protocol leaves room for improvement. There is seldom
information on what correct processing of orders should look like. Defining a clear specification is
important because it establishes the difference between correct and incorrect behavior. For exam-
ple, the implementation is indicative that applying orders in a pool could be seen as the operation
of an inverse semigroup, whose elements are batches of orders and they could be inverted in the re-
spective setting. A more formal description of such operations is invaluable for creating meaningful
tests and establishing the criteria of what constitutes correct behavior from what is a bug. In this par-
ticular instance, there is no ground truth that we can use to check whether the functions defined in
Minswap.ConstantProductPool.Utils are correct.

2.3 Conclusion
This report outlines the 13 concerns that we have gathered while inspecting the design and code of
MinSwap, pertaining to the code contained in the files listed in Table 2.1. As stated in Chapter 1, Tweag

9

does not recommend for nor against the use of any work referenced in this report. Nevertheless, the
existence of high and critical severity concerns is a warning sign.

10

Appendix A

Appendix

A.1 Tweag's Modifications
We have applied the three patches listed in Listings 1 to 3, which modify some of the files listed in
Table 2.1 making them more amenable to testing.

diff --git a/src/Minswap/ConstantProductPool/Types.hs b/src/Minswap/ConstantProductPool/Types.hs
index 8fceb19..1e7bf16 100644
--- a/src/Minswap/ConstantProductPool/Types.hs
+++ b/src/Minswap/ConstantProductPool/Types.hs
@@ -34,7 +34,7 @@ data ProfitSharing = ProfitSharing

{ psFeeTo :: Address,
psFeeToDatumHash :: Maybe DatumHash

}
- deriving (Haskell.Show)
+ deriving (Haskell.Show, Haskell.Eq)

PlutusTx.makeIsDataIndexed ''ProfitSharing [('ProfitSharing, 0)]
PlutusTx.makeLift ''ProfitSharing
@@ -52,7 +52,7 @@ data PoolDatum = PoolDatum

pdRootKLast :: Integer,
pdProfitSharing :: Maybe ProfitSharing

}
- deriving (Haskell.Show)
+ deriving (Haskell.Show, Haskell.Eq)

PlutusTx.makeIsDataIndexed ''PoolDatum [('PoolDatum, 0)]
PlutusTx.makeLift ''PoolDatum
@@ -78,7 +78,7 @@ data PoolRedeemer

| WithdrawLiquidityShare
{ wlsFeeToIndex :: Integer
}

- deriving (Haskell.Show)
+ deriving (Haskell.Show, Haskell.Eq)

PlutusTx.makeIsDataIndexed
''PoolRedeemer

Listing 1: Patch for Minswap.ConstantProductPool.Types

11

diff --git a/src/Minswap/ConstantProductPool/OnChain.hs b/src/Minswap/ConstantProductPool/OnChain.hs
index 46c826f..0f6e7b6 100644
--- a/src/Minswap/ConstantProductPool/OnChain.hs
+++ b/src/Minswap/ConstantProductPool/OnChain.hs
@@ -21,6 +21,8 @@

module Minswap.ConstantProductPool.OnChain
(poolCode,

+ mkLicenseSymbol,
+ mkOwnerTokenName

)
where

Listing 2: Patch for Minswap.ConstantProductPool.OnChain

diff --git a/src/Minswap/BatchOrder/Types.hs b/src/Minswap/BatchOrder/Types.hs
index a1c74b9..dd4c5a2 100644
--- a/src/Minswap/BatchOrder/Types.hs
+++ b/src/Minswap/BatchOrder/Types.hs
@@ -48,7 +48,7 @@ data OrderStep

{ osdDesiredCoin :: AssetClass,
osdMinimumLP :: Integer

}
- deriving (Haskell.Show)
+ deriving (Haskell.Show, Haskell.Eq)

PlutusTx.makeIsDataIndexed
''OrderStep

@@ -68,12 +68,13 @@ data OrderDatum = OrderDatum
odBatcherFee :: Integer,
odOutputADA :: Integer

}
- deriving (Haskell.Show)
+ deriving (Haskell.Show, Haskell.Eq)

PlutusTx.makeIsDataIndexed ''OrderDatum [('OrderDatum, 0)]
PlutusTx.makeLift ''OrderDatum

data OrderRedeemer = ApplyOrder | CancelOrder
+ deriving (Haskell.Eq)

PlutusTx.makeIsDataIndexed
''OrderRedeemer

Listing 3: Patch for Minswap.BatchOrder.Types

12

	Executive Summary and Scope
	Audit
	Methodology
	Findings
	Vulnerabilities
	Implementation Bugs
	Unclear Specification
	Code Quality

	Conclusion

	Appendix
	Tweag's Modifications

